Notes Chapter 1 Lesson 3

Graphing Position

Graphs

- Graphs can show how objects change position or speed.

Position-Time Graphs

- Graphs often show how something changes with time.

Temperature at Santa Barbara, CA, July 30, 2005

- This graph shows how temperature changes with time in Santa Barbara, California.

Making a Position-Time Graph

- This table shows how far a turtle has moved after an amount of time.

Table 1 Turtle's Position and Time	
Elapsed Time (s)	Position (cm)
0	0
20	40
40	81
60	123
80	158
100	202

Making a Position-Time Graph (cont.)

- Plotting the time on the x-axis and plotting the distance the turtle has moved on the y-axis creates the graph.
- You can draw a line through the points and use it to estimate the position at a given time.

Besources
H \rightarrow

Units on Position-Time Graphs

- Each number has units associated with it.
- Position has units of length like cm, m, or km.
- Seconds, minutes, and days are units of time.

Slope of a Position-Time Graph

- The steepness of a line on a graph is called the slope.
- The steeper the slope, the _Faster the object is traveling.
Turtle Race

Slope of a Position-Time Graph (cont.)

- On a positiontime graph, a steeper line means a greater average speed.

Calculating Slope from a Position-Time Graph

Car Moving at Constant Speed

- To find the slope of a line, the origin and another point are used to calculate the rise and the run.

Resources
H|

Calculating Slope from a Position-Time Graph (cont.)

slope $=\frac{\text { rise }}{\text { run }}$

18. Rise is the change in vertical direction.

困 - Run is the change in horizontal direction.

Calculating Slope
(1) Choose a point on the line. (2) The rise equals the y-value of the point. (3) The run equals the x-value of the point. (4) Calculate the slope by dividing the rise by the run

Resources

Slope and Average Speed

- Average speed is the total distance divided by the total time elapse to travel that distance.
- Rise is equal to the distance traveled.
- Run is equal to the time elapsed needed to travel that distance.
- Average speed is equal to the

Turtle Race
 slope of the line on a positiontime graph.

Resources \square

Position-Time Graphs for Changing Speed

- Only objects with a constant speed will have position-time graphs with a straight line.

Position-Time Graphs for Changing Speed (cont.)

- To find the average speed of the entire trip, use the starting and ending points.

Position-Time Graphs for Changing Speed (cont.)

- Then calculate the slope of the line that would connect those points.

Speed-Time Graphs

- Graphing instantaneous speed of an object shows how the speed of an object changes with time.
- Constant speed on a speed-time graph is a horizontal line because the speed does not change.

Constant Speed

Resources
$\rightarrow \rightarrow$

Speed-Time Graphs (cont.)

- If an object speeds up, the plotted line slants up towards the right.

Speed-Time Graphs (cont.)

- If an object slows down, the plotted line slants down towards the right.

잉 Rasares

