Notes Chapter 1 Lesson 3

Graphing Position

Graphs

• Graphs can show how objects change position or speed.

Position-Time Graphs

 Graphs often show how something changes with time.

This graph shows how temperature changes with time in Santa Barbara, California.

Making a Position-Time Graph

• This table shows how far a turtle has moved after an amount of time.

Table 1 Turtle's Position and Time		
Elapsed Time (s)	Position (cm)	
0	0	
20	40	
40	81	
60	123	
80	158	
100	202	

Making a Position-Time Graph (cont.)

 Plotting the time on the x-axis and plotting the distance the turtle has moved on the y-axis creates the graph.

Resources

 You can draw a line through the points and use it to <u>estimate</u> the position at a given time.

Units on Position-Time Graphs

- Each number has units associated with it.
- Position has units of length like cm, m, or km.
- Seconds, minutes, and days are units of time.

1.12		
11		
	-	

Slope of a Position-Time Graph

- The steepness of a line on a graph is called the slope.
 - The steeper the slope, the <u>Faster</u> the object is traveling.

GHAP1

Slope of a Position-Time Graph (cont.)

 On a positiontime graph, a steeper line means a greater average speed.

Calculating Slope from a Position-Time Graph

 To find the slope of a line, the origin and another point are used to calculate the rise and the run.

Calculating Slope from a Position-Time Graph (cont.)

- Rise is the change in vertical direction.
- Run is the change in horizontal direction.

Slope and Average Speed

- Average speed is the total distance divided by the total time elapse to travel that distance.
- Rise is equal to the distance traveled.
- Run is equal to the time elapsed needed to travel that distance.
- Average speed is equal to the slope of the line on a position-time graph.

Position-Time Graphs for Changing Speed

 Only objects with a constant speed will have position-time graphs with a straight line.

Position-Time Graphs for Changing Speed (cont.)

• To find the average speed of the entire trip, use the starting and ending points.

CHAPTER J

Position-Time Graphs for Changing Speed (cont.)

• Then calculate the slope of the line that would connect those points.

Speed-Time Graphs

 Graphing instantaneous speed of an object shows how the speed of an object changes with time.

Resources

 Constant speed on a <u>speed-time graph</u> is a horizontal line because the speed does not change.

Speed-Time Graphs (cont.)

• If an object speeds up, the plotted line slants up towards the right.

Speed-Time Graphs (cont.)

• If an object slows down, the plotted line slants down towards the right.

